NBA比赛结果预测项目

  import pandas as pd   import math   import csv   import random   import numpy as np   from sklearn import linear_model   from sklearn.model_selection import cross_val_score   # 当每支队伍没有elo等级分时,赋予其基础elo等级分   base_elo = 1600 #设置基础等级分为1600   team_elos = {} # 队伍elo等级   team_stats = {} #队伍分数统计值   X = [] #存储输入数据   y = [] #存储输出数据   folder = 'https://download.csdn.net/download/Deng872347348/data' #存放数据的目录   # 根据每支队伍的Miscellaneous Opponent,Team统计数据csv文件进行初始化   def initialize_data(Mstat, Ostat, Tstat):   new_Mstat = Mstat.drop(['Rk', 'Arena'], axis=1)   new_Ostat = Ostat.drop(['Rk', 'G', 'MP'], axis=1)   new_Tstat = Tstat.drop(['Rk', 'G', 'MP'], axis=1)   team_stats1 = pd.merge(new_Mstat, new_Ostat, how='left', on='Team')   team_stats1 = pd.merge(team_stats1, new_Tstat, how='left', on='Team')   print(team_stats1.info())   return team_stats1.set_index('Team', inplace=False, drop=True)   def build_dataSet(all_data):   print("Building data set..")   X = []   skip = 0   for index, row in all_data.iterrows():   Wteam = row['WTeam']   Lteam = row['LTeam']   #获取最初的elo或是每个队伍最初的elo值   team1_elo = get_elo(Wteam)   team2_elo = get_elo(Lteam)   # 给主场比赛的队伍加上100的elo值   if row['WLoc'] == 'H':   team1_elo += 100   else:   team2_elo += 100   # 把elo当为评价每个队伍的第一个特征值   team1_features = [team1_elo]   team2_features = [team2_elo]   # 添加我们从basketball reference.com获得的每个队伍的统计信息   for key, value in team_stats.loc[Wteam].iteritems():   team1_features.append(value)   for key, value in team_stats.loc[Lteam].iteritems():   team2_features.append(value)   # 将两支队伍的特征值随机的分配在每场比赛数据的左右两侧   # 并将对应的0/1赋给y值   if random.random() > 0.5:   X.append(team1_features + team2_features)   y.append(0)   else:   X.append(team2_features + team1_features)   y.append(1)   if skip == 0:   print('X',X)   skip = 1   # 根据这场比赛的数据更新队伍的elo值   new_winner_rank, new_loser_rank = calc_elo(Wteam, Lteam)   team_elos[Wteam] = new_winner_rank   team_elos[Lteam] = new_loser_rank   return np.nan_to_num(X), y   def predict_winner(team_1, team_2, model):   features = []   # team 1,客场队伍   features.append(get_elo(team_1))   for key, value in team_stats.loc[team_1].iteritems():   features.append(value)   # team 2,主场队伍   features.append(get_elo(team_2) + 100)   for key, value in team_stats.loc[team_2].iteritems():   features.append(value)   features = np.nan_to_num(features)   return model.predict_proba([features])   def get_elo(team):   try:   return team_elos[team]   except:   # 当最初没有elo时,给每个队伍最初赋base_elo   team_elos[team] = base_elo   return team_elos[team]   # 计算每个球队的elo值   def calc_elo(win_team, lose_team):   winner_rank = get_elo(win_team)   loser_rank = get_elo(lose_team)   rank_diff = winner_rank - loser_rank   exp = (rank_diff * -1) / 400   odds = 1 / (1 + math.pow(10, exp))   # 根据rank级别修改K值   if winner_rank < 2100:   k = 32   elif winner_rank >= 2100 and winner_rank < 2400:   k = 24   else:   k = 16   # 更新 rank 数值   new_winner_rank = round(winner_rank + (k * (1 - odds)))   new_loser_rank = round(loser_rank + (k * (0 - odds)))   return new_winner_rank, new_loser_rank   if __name__ == '__main__':   Mstat = pd.read_csv(folder + '/15-16Miscellaneous_Stat.csv') #读取Mstat表格的数据   Ostat = pd.read_csv(folder + '/15-16Opponent_Per_Game_Stat.csv')   Tstat = pd.read_csv(folder + '/15-16Team_Per_Game_Stat.csv')   team_stats = initialize_data(Mstat, Ostat, Tstat)   result_data = pd.read_csv(folder + '/2015-2016_result.csv')   X, y = build_dataSet(result_data)   # 训练网络模型   print("Fitting on %d game samples.." % len(X))   model = linear_model.LogisticRegression()   model.fit(X, y)   # 利用10折交叉验证计算训练正确率   print("Doing cross-validation..")   print(cross_val_score(model, X, y, cv = 10, scoring='accuracy', n_jobs=-1).mean())   # 利用训练好的model在16-17年的比赛中进行预测   print('Predicting on new schedule..')   schedule1617 = pd.read_csv(folder + '/16-17Schedule.csv')   result = []

NBA比赛结果预测项目

  for index, row in schedule1617.iterrows():   team1 = row['Vteam']   team2 = row['Hteam']   pred = predict_winner(team1, team2, model)   prob = pred[0][0]   if prob > 0.5:   winner = team1   loser = team2   result.append([winner, loser, prob])   else:   winner = team2   loser = team1   result.append([winner, loser, 1 - prob])   with open('data/16-17Result.csv', 'w') as f:   writer = csv.writer(f)   writer.writerow(['win', 'lose', 'probability'])   writer.writerows(result)   print('done.')   Rdata = pd.read_csv(folder + '/16-17Result.csv', header=0)   print(Rdata)

推荐新闻

球队排行

足球球队排行 篮球球队排行
排名球队胜/平/负积分